Studies on the Total Synthesis of Pseudolaric Acid A Stereocontrolled Synthesis of the Seven-membered Lactone

You Hong HU, Li Gong OU, Xi Lu WANG, Dong Lu BAI*
Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 294 Taiyuan Road, Shanghai 200031

Abstract

Abstact: The lactone 16 was obtained stereo- and regioselectively by a reaction sequence of 9 steps in 21% overall yield.

Keywords: Pseudplaric acid A, stereocontrl synthesis, seven-membered lactone.

Pseudolaric acid A was isolated from Pseudolarix kaempferi Gord, a Chinese medicinal herb which exhibits antifungal and antifertility activities ${ }^{1}$. It is a diterpenic acid with a trans fused hydroazulene skeleton containing four chiral centers ${ }^{2}$. According to the retrosynthetic analysis, the tricyclis skeleton of $\mathbf{1}$ could be constructed by a stereoselective intramolecular $[4+3]$ cycloaddition from a seven-membered lactone 4 (Scheme 1). In this communication, we would like to report an efficient, stereo- and regio-selective, synthesis of lactone 4.

Scheme 1

The synthesis began with the tetrahydropyranyloxy aldehyde 5, obtained in 70% yield from 1, 5-pentanediol monotetrahydropyranyl ether by oxidation with PCC and NaOAc in large quantities ${ }^{3}$. Aldehyde 5 was converted to the trans-allylic alcohol $\mathbf{6}$ by Wittig reaction, followed by DIBAL reduction of the resulting ester ${ }^{4}$. Sharpless asymmetric epoxidation of 6 in the presence of D- (-)-DIPT yielded a mixture of the epoxide $7(3 R, 2 S)^{5}$ and its enantiomer. The ratio of the two epoxides was determined in the form of their Mosher ester

8, by ${ }^{1} H$ NMR spectra. The ee value is over 95%. Since this asymmetric epoxidation of the transallylic alcohol is well-known, the absolute configuration of the epoxide 7 could be deduced unequivocally ${ }^{6}$.

Scheme 2

5

6

Reagents and conditions: a. i. $(\mathrm{EtO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{COOEt}, \mathrm{NaH}, \mathrm{THF}$, reflux, $1.5 \mathrm{~h}, 74 \%$. ii. DIBAL, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $78^{\circ} \mathrm{C}, 2 \mathrm{~h}, 95 \%$.b. 1.5 eq. t-BuOOH, 0.08 eq. Ti (OiPr) $)_{4}, 0.1$ eq. $\mathrm{D}-(-)-\mathrm{DIPT}, 4 \AA \mathrm{MS}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-20^{\circ} \mathrm{C}, 4 \mathrm{~h}, 85 \%$. c. (S)- α-methoxy- α - (trifluoromethyl) phenylacetyl chloride, DMAP, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., $24 \mathrm{~h}, 95 \%$. d. TBDMSCl, imidazole, DMF, $0^{\circ} \mathrm{C}, 12 \mathrm{~h}, 93 \%$. e. 1.1 eq. $\mathrm{Ph}{ }_{3} \mathrm{CCl}, 1.2$ eq. $\mathrm{DBU}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ to r.t., $7 \mathrm{~h}, 85 \%$. f. 4 eq. (Methylfuryl) $)_{2} \mathrm{CuCNL}_{2}, 4$ eq. $\mathrm{BF}_{3} \mathrm{Et}_{2} \mathrm{O}, \mathrm{Et}_{2} \mathrm{O},-78^{\circ} \mathrm{C}, 4 \mathrm{~h}, 70 \%$. g. Dess-Martin Periodide, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., 3 h , 83%. h. $\mathrm{CH}_{3} \mathrm{MgBr}, \mathrm{THF},-78^{\circ} \mathrm{C}, 12 \mathrm{~h}, 88 \%$. i. PPTS, EtOH, $55^{\circ} \mathrm{C}, 3 \mathrm{~h}, 85 \%$. j. PDC, DMF, r.t., 2 d, 95%.

In order to improve the regioselectivity in a cuprate opening of the epoxide 7, a bulky group for the protection of the hydroxyl was favorable ${ }^{7}$. Conseqeuently, $\mathbf{9}$ was obtained in 93% yield using TBDMSCl as the protecting reagent.,However, the ring opening of epoxide 9 by a variety of cuprates (furyl cuprate, furyl lithium cuprate, (5 -methyl-2-furyl) $)_{2} \mathrm{CuLi}_{2}$) was unsuccessful. Finally, compound $\mathbf{1 1}$ was obtained by the reaction of 9 with 4eq. of each (5-methyl-2-furyl) ${ }_{2} \mathrm{CuCNLi}_{2}{ }^{8}$ in the presence of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ at $-78^{\circ} \mathrm{C}$ in $\mathrm{Et}_{2} \mathrm{O}$ in 55% yield. However, when the hydroxy group of $\mathbf{7}$ was protected as trityl ether 10, the regioselective
cleavage of $\mathbf{1 0}$ epoxide under the same conditions gave the sole product compound $\mathbf{1 2}$ (3 S , $2 S)^{9}$ in a satisfactory yield (70\%).

Dess-Martin oxidation of $\mathbf{1 2}$ gave the ketone $\mathbf{1 3}$ in 83% yield ${ }^{10}$ Because of the bulky trityl group, no chelation occurred at ether oxygen with organometallic reagents in this molecule ${ }^{11}$. Therefore according to the Cram or Felkin-Anh models, the addition of $\mathrm{CH}_{3} \mathrm{MgBr}$ to ketone $\mathbf{1 3}$ at $-78^{\circ} \mathrm{C}$ afforded the major adduct $\mathbf{1 4}(3 \mathrm{~S}, 2 \mathrm{R})^{12}$ in 88% yield. The ratio of two diastereomers are about $10: 1$ by ${ }^{1} \mathrm{HNMR}$ analysis. Selective removal of the THP group of $\mathbf{1 4}$ with PPTS in ethanol at $55^{\circ} \mathrm{C}$ gave 1,6 -diol 15^{13}, and oxidation of the diol $\mathbf{1 5}$ with PDC in DMF 14 yielded the expected lactone $16(3 S, 2 S)^{15}$ directly.

Thus lactone 16 with two chiral centers at C_{11} and C_{3} in pseudolaric acid A was synthesized in 9 steps and in 21% overall yield. The 4π component in lactone $\mathbf{1 6}$ could be used for the intramolecular $[4+3]$ cycloaddition for the construction of the ring skeleton of the target molecule 1.

Acknowledgments

This work was supported by a grant of the Nationl Natural Science Foundation of China.

References

1. B. N. Zhou; B. P. Ying; G. Q. Song; Z. X. Chen; J. Han; Y. E. Yan. Planta Medica, 1983, 47, 35. B. C. Pan; H. Y. Chang; G. L. Cai; Y. S. Guo. Pure \& Appl. Chem., 1989, 61, 389. E. Li; A. M. Clark; C. D. Hufford. J. Nat. prod. 1995, 58, 57.
2. B. P. Ying; R. S. Xu; J. F. Mi; M. Han. HUAXUEXUEBAO, 1988, 46, 85.
3. K. F. Bernaday; M. B. Floyd; J. F. Poletto; M. J. Weiss. J. Org. Chem., 1979, 44, 1438. J. C. Collins; W. W. Hess; F. J. Frank, Tetrahedron Lett., 1968, 3363. E. J. Corey; H. Yamamoto; D. K. Herron; K. Achiwa. J. Am. Chem. Soc., 1970, 92, 6636.
4. H. Nagaoka; Y. Kishi. Tetrahedron, 1981, 37, 3873.
5. Selected data of compound 7 : oil, ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 4.50(\mathrm{t}, 1 \mathrm{H}), 3.00-3.80(\mathrm{~m}, 4 \mathrm{H}), 2.70(\mathrm{~m}, 2 \mathrm{H})$, 1.00-2.00 (m,14H); MS (m/z): 177 (6), 145 (12), 129 (35), 101 (32), 85 (100); IR (film): 3500, 3000, 1720, $1454,1201,1031 \mathrm{~cm}^{-1}$.
6. T. Katsuki; K. B. Sharpless. J. Am. Chem. Soc., 1980, 102, 5974. Y. Gao; R. M. Hanson; J. M. Klunder. J. Am. Chem. Soc., 1987, 109, 5765.
7. R. D. Tung; D. H. Rich. Tetrahedron Lett., 1987, 28, 1139. W. W. Mcwhorter;Jr. S. H. Kang; Y. Kishi. Tetrahedron Lett., 1983, 24, 2243.
8. J. S. Ng; J. R. Behling; A. L. Campbell; D. Nguyen; B. Lipshutz. Tetrahedron Lett., 1988, 29, 3045.
9. Selected data of compound 12 : oil, ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.20 \sim 7.50(\mathrm{~m}, 15 \mathrm{H}), 5.80(\mathrm{~d}, 1 \mathrm{H}), 4.52(\mathrm{~m}$, $1 \mathrm{H}), 3.8-3.90(\mathrm{~m}, 2 \mathrm{H}), 3.45(\mathrm{~m}, 1 \mathrm{H}), 3.32(\mathrm{~m}, 1 \mathrm{H}), 3.06(\mathrm{~m}, 2 \mathrm{H}), 2.78(\mathrm{~m}, 1 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 1.60 \sim 1.80(\mathrm{~m}$, 12H); MS (m/z): 554 (M+, 0.2), 536 (1), 243 (100), 165 (59), 85 (100); Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{42} \mathrm{O}_{5}$: C, 77.89; H, 7.79. Found: C, 77.95; H, 7.63.
10. S. D. Meyer; S. L. Schreiber. J. Org. Chem., 1994, 59, 7549.
11. S. V. Frye; E. L. Elliel. J. Am. Chem. Soc., 1988, 110, 484.
12. Selected data of compound $\mathbf{1 4}$: oil, ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.20 \sim 7.45(\mathrm{~m}, 15 \mathrm{H}), 5.85(\mathrm{~d}, 1 \mathrm{H}), 5.79(\mathrm{~d}$, $1 \mathrm{H}), 4.50(\mathrm{t}, 1 \mathrm{H}), 3.80(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{~m}, 1 \mathrm{H}), 3.45(\mathrm{~m}, 1 \mathrm{H}), 3.28(\mathrm{~m}, 1 \mathrm{H}), 3.00(\mathrm{dd}, 2 \mathrm{H}, \mathrm{J}=9.0 \mathrm{~Hz}), 2.98(\mathrm{~m}$, $1 \mathrm{H}), 2.40(\mathrm{~s}, 1 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 1.40 \sim 1.57(\mathrm{~m}, 12 \mathrm{H}), 1.15(\mathrm{~s}, 3 \mathrm{H}) ; \mathrm{MS}(\mathrm{m} / \mathrm{z}): 384(2), 260(23), 243(28), 183$ (100), 154 (24), 105 (92). IR (film) : 3458, 3050, 2995, 1597, 1491, 1448, 1353, 1074, 1024, 902,765, $704 \mathrm{~cm}^{-1}$; Anal. Calcd for $\mathrm{C}_{37} \mathrm{H}_{44} \mathrm{O}_{5}$: C, 77.95; H, 8.16. Found: C, 78.14; H, 7.80.
13. M. Miyashita; A. Yoshikoshi; P. A. Grieco. J. Org. Chem., 1977, 42, 3772.
14. E. J. Corey; G. Schmidt. Tetrahedron Lett., 1979, 399.
15. Selected data of compound $16:{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 7.10~7.45 (m, 15H), $5.89(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.1 \mathrm{~Hz})$, $5.80(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.1 \mathrm{~Hz}), 3.50(\mathrm{t}, 2 \mathrm{H}), 3.00(\mathrm{dd}, 2 \mathrm{H}, \mathrm{J}=9.2 \mathrm{~Hz}), 2.98(\mathrm{~m}, 1 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 1.20 \sim 1.60(\mathrm{~m}$, 4H), 1.15 (s. 3H); MS (M/Z\%): 243 (100), 167 (30), 95 (18);, IR (film) : 1739, 1448, 1373, 1244, 1074, $1047,708 \mathrm{~cm}^{-1} .[\alpha]^{25}=4.41$; Anal calcd for $\mathrm{C}_{32} \mathrm{H}_{32} \mathrm{O}_{4}: \mathrm{C}, 80.00 \% ; \mathrm{H}, 6.67$. Found: C, 79.73; H, 6.69.

Received 4 November 1998

